Introduction
The SunLizard Solar Air Heater/Cooler was designed by Alternative Fuels & Energy, based in Mt Evelyn, Victoria.
Note: The design has changed slightly since I purchased mine. The Heating/Cooling flap (described below) is no longer at the bottom of the unit - It is now near the inlet & outlet vents, behind the PV Panel.
I wanted to try it out because my house has
traditionally been quite cold in Winter. On a mild sunny Winter's
day, the outside temperature can be a good several degrees warmer
than in the main living area of the house. [See house description for
background info on the house]. I'm hoping to make the Living Area
a bit more pleasant to be in
Although a number of these units have been installed in Victoria
and a few in other states, my system which was installed in
November 2003, was the first in the Sydney area.
Sydney experiences a lot of cool but sunny days in Winter, which are ideal conditions for this type of unit. Whilst it may also provide useful heat on days with haze or high cloud, don't expect too much from the unit on rainy or heavily clouded days.
Theory of Operation:
The Sunlizard has primarily been designed as a heating unit. By rotating a flap at the bottom right hand corner of the unit, it can also be set for Venting / Cooling.
The 20 Watt Solar Photovotaic (PV) Panel mounted on the SunLizard is used to power the two fans inside the unit. The fans will only operate when there is sufficient sunlight reaching the panel.
The main unit which sits on the roof absorbs the infared rays from the sun, and heats the air within the unit. This works on a similar principle to a solar hot water system. When the flap is closed, the system becomes a 'closed circuit'. By design, the fans will start working when the air inside the unit has started to warm up. Air from the room or area to be heated is drawn out through the ceiling vent and insulated ducting into the Sunlizard. The air is heated as it circulates through the unit. The warmed air then passes out of the unit, through some more insulated ducting and into the room/area to be heated through a wall mounted vent. |
When the flap is open, air from the room or area to be cooled is drawn through the ceiling vent and ducting into the Sunlizard's inlet vent. Rather than circulating through the Sunlizard, the air is vented outside. Cooler air can then flow into the house through floor vents or from gaps under doors. Diagrams created by Hugh Todd |
Main System Components:
![]() ![]() |
There are a few other items required, which may vary with the site and installation method chosen.
DataLogger:
I have a datalogger with six temperature sensors attached. The sensor locations are:
(1) Inlet: In the ducting, just before the SunLizard's inlet
(2) Outlet: In the ducting, just after the SunLizard's outlet
(3) Living area: Near the diagonally opposite corner of the loungeroom from the Sunlizard's outlet vent.
(4) Outside: Under the eaves, just outside the loungeroom window
(5) Under Floor: Under the loungeroom floor
(6) Roofspace: Above the loungeroom ceilingThe datalogger is set to send out a reading of each of these sensors every 30 seconds. The temperature data can be viewed and logged to a PC with the software provided.
Preliminary Test Results:
Some Temperatures observed on May 23rd, 2004
Time | Outlet Temperature | Living Area |
Outside | Under Floor |
Roof space |
|
At SunLizard |
In Living Area |
|||||
10:40am | 41 | 33 | 16 | 18 | 16 | 18 |
11.40am | 44 | 37 | 17 | 20.5 | 17 | 22 |
12:45pm | 48 | 41 | 18 | 22 | 17 | 24 |
1:00pm | 50 | 44 | 18 | 23 | 17 | 25 |
2:30pm | 44 | 38 | 19 | 22 | 17.5 | 26 |
Note: The 'Outlet Temperature in Living Area' readings were taken with a normal household thermometer placed in front of the outlet vent. The other readings were taken using the datalogger.
Some observations:
Some further data can be seen here.
Notes: Experiences, Modifications, Short & Longer Term plans:
» Heating
At present, the living area is not heating up as much as I had hoped it would. Or, perhaps it might be more correct to say that the area is heating up a little, but then cooling down more rapidly than expected. I think the main culprit is my house. I've done a few things such as:
- removing the 13 downlights and filling the holes they left in the ceiling
- replacing the batt insulation that was removed because of the downlights
- adding extra ceiling insulation to those areas that previously didn't have any
- removing the wall vents in each room and the ceiling vents in the kitchen, and patching-up the holes they left.
- Sealed a few other gaps around doors etc.
The modifications made so far have not made a huge improvement to the amount of heat retained in the living area. I've still got a few things I want to try though..
» Cooling / Venting
I've installed a switch just outside the back door which lets me turn the fan on or off. This is not part of the original design. In the middle of the day during Summer, often the outside temperature was warmer than the temperature in the house. I didn't want the cooler air from within the house being vented, only to be replaced by warmer air from outside. The time that the venting would be of most use is after dusk, when the outside temperature has fallen below that inside the house. Unfortunately, the PV Panels won't provide any power to drive the fans at night.
There are a few possibilities here:
Install a sealable vent in the floor. During Summer, this vent would be open, allowing the cooler air from under the house to be brought into the house.
Use the PV Panel and a regulator to charge a small rechargable (Sealed Lead Acid or Gel Cell) battery during the day, and use this battery to power the fans at night.
Use an appropriately sized 240 Volt power supply or plugpack to power the fans at night. This has the disadvantage of requiring extra power (usually from non-renewable sources), albeit only a relatively small amount compared with some other cooling options.
» General
The fact that the SunLizard is facing west of True North means that more heat is delivered in the afternoon. This is good if the aim is to heat the house for when people get home from work in the evening, but not so good if people are in the house during the day, waiting for the heat to kick in.
The 20 Watt Photovoltaic (PV) Panel which drives the internal fans is mounted on the Sun Lizard at an offset of 30 degrees in elevation. Together with my roof-pitch of 30°, this means that the PV Panel is inclined at 60° from the horizontal - OK for the middle of winter, but not ideal for other times of the year. (The PV Panels on the Carport roof have adjustable angles, between 20° for summer and 55° for Winter - See PV Grid-Interactive System page for more details). I'd like to make the angle of the PV Panel adjustable - Maybe with 3 settings, similar to my other PV panels.
The SunLizard was designed to work most effectively on a roof with a pitch of around 20°. In the future I may raise the bottom of the unit so that the elevation of the unit is closer to the 20° mark.
Also see the SunLizard Installation Notes & Photos page.
Last Updated: 25/07/04